Periodic-orbit theory of the blowout bifurcation
نویسندگان
چکیده
This paper presents a theory for characterization of the blowout bifurcation by periodic orbits. Blowout bifurcation in chaotic systems occurs when a chaotic attractor, lying in some symmetric invariant subspace, becomes transversely unstable. We present an analysis and numerical results that indicate that the bifurcation is mediated by changes in the transverse stability of an infinite number of unstable periodic orbits embedded in the chaotic attractor. There are two distinct groups of periodic orbits: one transversely stable and another transversely unstable. The bifurcation occurs when some properly weighted transverse eigenvalues of these two groups are balanced. Our results thus categorize the blowout bifurcation as a unique type of bifurcation that involves an infinite number of periodic orbits, in contrast to most previously known bifurcations that are mediated by only a finite number of periodic orbits. @S1063-651X~97!08610-8#
منابع مشابه
Characterization of blowout bifurcation by unstable periodic orbits
Blowout bifurcation in chaotic dynamical systems occurs when a chaotic attractor, lying in some invariant subspace, becomes transversely unstable. We establish quantitative characterization of the blowout bifurcation by unstable periodic orbits embedded in the chaotic attractor. We argue that the bifurcation is mediated by changes in the transverse stability of an infinite number of unstable pe...
متن کاملBIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF
In this paper, first we discuss a local stability analysis of model was introduced by P. J. Mumby et. al. (2007), with $frac{gM^{2}}{M+T}$ as the functional response term. We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef. Next, we consider this model under the influence of the time delay as the bifurcat...
متن کاملBlowout bifurcations and the onset of magnetic dynamo action*
This paper numerically investigates the magnetohydrodynamic equations in three dimensions with periodic boundary conditions in a parameter range where a forced fluid flow is chaotic. It is found that the transition to dynamo action, whereby the magnetic field is sustained by interaction with the forced flow, is a blowout bifurcation. The blowout bifurcation is typified by bursting behavior, or ...
متن کاملResonant Homoclinic Bifurcations with Orbit Flips and Inclination Flips
Homoclinic bifurcation with one orbit flip, two inclination flips and resonance in the tangent directions of homoclinic orbit is considered. By studying the associated successor functions constructed from a local active coordinate system, we prove the existence of double 1-periodic orbit, 1-homoclinic orbit, and also some coexistence conditions of 1-periodic orbit and 1-homoclinic orbit.
متن کاملPeriodic-Orbit Bifurcation and Shell Structure at Exotic Deformation
By means of periodic orbit theory and deformed cavity model, we have investigated semiclassical origin of superdeformed shell structure and also of reflection-asymmetric deformed shapes. Systematic analysis of quantum-classical correspondence reveals that bifurcation of equatorial orbits into three-dimensional ones play predominant role in the formation of these shell structures. PACS number: 2...
متن کامل